Rabu 05 Jan 2022 15:02 WIB

Tentukan Destinasi Wisata Unggulan Berdasarkan Online Reviews Tripadvisor

Penerapan data mining pada data TripAdvisor bisa memberikan informasi wisata.

Dosen UNM melakukan penelitian wisata unggulan di kawawan Asia Timur dengan menggunakan Online Reviews Tripadvisor.
Foto: Dok UNM
Dosen UNM melakukan penelitian wisata unggulan di kawawan Asia Timur dengan menggunakan Online Reviews Tripadvisor.

REPUBLIKA.CO.ID, Oleh  Syarah Seimahuira

Sektor pariwisata mampu menjadi pendorong utama dalam perekonomian dunia dengan berbagai keuntungan. Keuntungan tersebut di antaranya menambah devisa negara, dan bisa memberikan peluang lapangan pekerjaan. Kedatangan wisatawan internasional di Indonesia, tumbuh 5% pada 2018 hingga mencapai angka 1,4 juta orang. Angka tersebut melampaui perkiraan dari World Tourism Organization. 

Kenaikan tersebut dipengaruhi oleh berbagai negara khususnya benua Asia yang mampu menyumbang hingga lebih dari 7%  dari total ekspor dunia atau setara dengan 435 miliar dolar AS, mengutip laman  UNTWO pada 2019. Hal tersebut membuktikan, industri di bidang pariwisata memiliki peluang sangat besar untuk tumbuh.

Tingginya minat dalam bidang pariwisata, mampu meningkatkan kebutuhan informasi, sehingga mendorong penyedia layanan untuk mengembangkan teknologi baru, guna mengolah data dan memberikan informasi secara mudah dan cepat.  Salah satunya adalah TripAdvisor.

Pengguna layanan TripAdvisor memiliki fitur, di  mana pengunjung dimungkinkan memberi online review berupa rating bagi tempat wisata yang pernah mereka kunjungi. Dengan penerapan data mining, banyaknya data skala yang masuk, dapat dikelola dengan relatif cepat sehingga mudah dalam menemukan informasi.

Berdasarkan pengujian yang dilakukan oleh dosen Universitas Nusa Mandiri (UNM) menggunakan metode clustering, dengan menerapkan algoritma K-Means, mampu mengelompokkan data rating pengguna layanan dengan baik. Hal tersebut dibuktikan dengan nilai Davies-Bouldin Index yang bernilai 0.134 serta dapat membatu dalam mengambil keputusan selanjutnya untuk mengembangkan destinasi unggulan tersebut.

Sehingga,  dapat diketahui destinasi unggulan berdasarkan cluster pada C1 yakni picnic/parks spot (PS) = 3.177, religion institution (RI) = 2.925, beach (BC) = 2.854, resorts (RE) = 1.625, dan theaters (TH) = 1.597.

Maka dapat disimpulkan bahwa penerapan data mining pada data TripAdvisor, bisa memberikan informasi wisata dan menghasilkan pengetahuan baru terkait   destinasi unggulan berdasarkan nilai cluster yang didapatkan pada implementasi di simulator Rapid Miner. 

Penelitian ini menjadi tolak ukur terkait pengelolaan pemasaran dan pengiklanan destinasi yang paling unggul di kawasan Asia Timur dan diperoleh destinasi terbaik di kawasan Asia Timur dengan ranking tertinggi. Berdasarkan hasil tersebut, tempat wisata paling populer yaitu tempat piknik atau taman, tempat wisata religi, pantai, resorts dan bioskop.

*) Penulis adalah dosen Universitas Nusa Mandiri (UNM), Prodi Sains Data.

 

BACA JUGA: Update Berita-Berita Politik Perspektif Republika.co.id, Klik di Sini
Advertisement
Berita Lainnya
Advertisement
Advertisement
Advertisement